Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A multi-color quantum well photodetector for mid- and long-wavelength infrared detection

Identifieur interne : 003498 ( Main/Repository ); précédent : 003497; suivant : 003499

A multi-color quantum well photodetector for mid- and long-wavelength infrared detection

Auteurs : RBID : Pascal:12-0066495

Descripteurs français

English descriptors

Abstract

The authors report a two-color quantum well infrared photodetector at room temperature operating in the mid- and long-wavelength infrared detection. To this purpose, the band alignment is tailored and electronic properties are investigated for the proposed structure based on Ga1-xInxAsySb1-y/GaSb and AlxGa1-xAsySb1-y/GaSb. As accurate knowledge of band offsets is required in device modeling, we have proceeded to theoretical investigations of the band offsets for pseudo-morphically strained and lattice-matched Ga1-xInxAsySb1-y/GaSb and AlxGa1-xAsySb1-y/GaSb heterointerfaces in the whole range of alloy compositions 0 ≤ x, y ≤ 1. The carrier effective masses are deduced from the laws extracted from the k.p strain Hamiltonian laws. For the modeled heterostructure, the dark current of about 10-1 A cm-2 at ambient temperature shows the high performance of this multi-color infrared photodetector around 5 and 12.5 μm wavelengths.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0066495

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">A multi-color quantum well photodetector for mid- and long-wavelength infrared detection</title>
<author>
<name sortKey="Jdidi, A" uniqKey="Jdidi A">A. Jdidi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Unité de Recherche de Physique des Solides, Département de Physique, Faculte des Sciences de Monastir</s1>
<s2>5019 Monastir</s2>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Tunisie</country>
<wicri:noRegion>5019 Monastir</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sfina, N" uniqKey="Sfina N">N. Sfina</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Unité de Recherche de Physique des Solides, Département de Physique, Faculte des Sciences de Monastir</s1>
<s2>5019 Monastir</s2>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Tunisie</country>
<wicri:noRegion>5019 Monastir</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Abdi Ben Nassrallah, S" uniqKey="Abdi Ben Nassrallah S">S. Abdi-Ben Nassrallah</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Unité de Recherche de Physique des Solides, Département de Physique, Faculte des Sciences de Monastir</s1>
<s2>5019 Monastir</s2>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Tunisie</country>
<wicri:noRegion>5019 Monastir</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Said, M" uniqKey="Said M">M. Saïd</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Unité de Recherche de Physique des Solides, Département de Physique, Faculte des Sciences de Monastir</s1>
<s2>5019 Monastir</s2>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Tunisie</country>
<wicri:noRegion>5019 Monastir</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lazzari, J L" uniqKey="Lazzari J">J. L. Lazzari</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), UPR-CNRS 3118 associée à Aix-Marseille Université, Case 913, Campus de Luminy</s1>
<s2>13288 Marseille</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Provence-Alpes-Côte d'Azur</region>
<settlement type="city">Marseille</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">12-0066495</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 12-0066495 INIST</idno>
<idno type="RBID">Pascal:12-0066495</idno>
<idno type="wicri:Area/Main/Corpus">002301</idno>
<idno type="wicri:Area/Main/Repository">003498</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0268-1242</idno>
<title level="j" type="abbreviated">Semicond. sci. technol.</title>
<title level="j" type="main">Semiconductor science and technology</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Absorption coefficients</term>
<term>Aluminium Gallium Antimonides arsenides Mixed</term>
<term>Band offset</term>
<term>Chemical composition</term>
<term>Current density</term>
<term>Effective mass</term>
<term>Gallium Indium Antimonides arsenides Mixed</term>
<term>Gallium antimonides</term>
<term>Hamiltonians</term>
<term>Heterostructures</term>
<term>High performance</term>
<term>Infrared detectors</term>
<term>Mismatch lattice</term>
<term>Photodetectors</term>
<term>Quantum wells</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Coefficient absorption</term>
<term>Photodétecteur</term>
<term>Discontinuité bande</term>
<term>Masse effective</term>
<term>Accommodation réseau</term>
<term>Composition chimique</term>
<term>Hamiltonien</term>
<term>Haute performance</term>
<term>Détecteur IR</term>
<term>Gallium Indium Arsénioantimoniure Mixte</term>
<term>Aluminium Gallium Arsénioantimoniure Mixte</term>
<term>Densité courant</term>
<term>Puits quantique</term>
<term>Antimoniure de gallium</term>
<term>Hétérostructure</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The authors report a two-color quantum well infrared photodetector at room temperature operating in the mid- and long-wavelength infrared detection. To this purpose, the band alignment is tailored and electronic properties are investigated for the proposed structure based on Ga
<sub>1-x</sub>
In
<sub>x</sub>
As
<sub>y</sub>
Sb
<sub>1-y</sub>
/GaSb and Al
<sub>x</sub>
Ga
<sub>1-x</sub>
As
<sub>y</sub>
Sb
<sub>1-y</sub>
/GaSb. As accurate knowledge of band offsets is required in device modeling, we have proceeded to theoretical investigations of the band offsets for pseudo-morphically strained and lattice-matched Ga
<sub>1-x</sub>
In
<sub>x</sub>
As
<sub>y</sub>
Sb
<sub>1-y</sub>
/GaSb and Al
<sub>x</sub>
Ga
<sub>1-x</sub>
As
<sub>y</sub>
Sb
<sub>1-y</sub>
/GaSb heterointerfaces in the whole range of alloy compositions 0 ≤ x, y ≤ 1. The carrier effective masses are deduced from the laws extracted from the k.p strain Hamiltonian laws. For the modeled heterostructure, the dark current of about 10
<sup>-1</sup>
A cm
<sup>-2 </sup>
at ambient temperature shows the high performance of this multi-color infrared photodetector around 5 and 12.5 μm wavelengths.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0268-1242</s0>
</fA01>
<fA02 i1="01">
<s0>SSTEET</s0>
</fA02>
<fA03 i2="1">
<s0>Semicond. sci. technol.</s0>
</fA03>
<fA05>
<s2>26</s2>
</fA05>
<fA06>
<s2>12</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>A multi-color quantum well photodetector for mid- and long-wavelength infrared detection</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>JDIDI (A.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>SFINA (N.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>ABDI-BEN NASSRALLAH (S.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>SAÏD (M.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>LAZZARI (J. L.)</s1>
</fA11>
<fA14 i1="01">
<s1>Unité de Recherche de Physique des Solides, Département de Physique, Faculte des Sciences de Monastir</s1>
<s2>5019 Monastir</s2>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), UPR-CNRS 3118 associée à Aix-Marseille Université, Case 913, Campus de Luminy</s1>
<s2>13288 Marseille</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s2>125019.1-125019.10</s2>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21041</s2>
<s5>354000508823730190</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>53 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0066495</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Semiconductor science and technology</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The authors report a two-color quantum well infrared photodetector at room temperature operating in the mid- and long-wavelength infrared detection. To this purpose, the band alignment is tailored and electronic properties are investigated for the proposed structure based on Ga
<sub>1-x</sub>
In
<sub>x</sub>
As
<sub>y</sub>
Sb
<sub>1-y</sub>
/GaSb and Al
<sub>x</sub>
Ga
<sub>1-x</sub>
As
<sub>y</sub>
Sb
<sub>1-y</sub>
/GaSb. As accurate knowledge of band offsets is required in device modeling, we have proceeded to theoretical investigations of the band offsets for pseudo-morphically strained and lattice-matched Ga
<sub>1-x</sub>
In
<sub>x</sub>
As
<sub>y</sub>
Sb
<sub>1-y</sub>
/GaSb and Al
<sub>x</sub>
Ga
<sub>1-x</sub>
As
<sub>y</sub>
Sb
<sub>1-y</sub>
/GaSb heterointerfaces in the whole range of alloy compositions 0 ≤ x, y ≤ 1. The carrier effective masses are deduced from the laws extracted from the k.p strain Hamiltonian laws. For the modeled heterostructure, the dark current of about 10
<sup>-1</sup>
A cm
<sup>-2 </sup>
at ambient temperature shows the high performance of this multi-color infrared photodetector around 5 and 12.5 μm wavelengths.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B00G57K</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Coefficient absorption</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Absorption coefficients</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Photodétecteur</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Photodetectors</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Discontinuité bande</s0>
<s5>05</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Band offset</s0>
<s5>05</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Discontinuidad banda</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Masse effective</s0>
<s5>06</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Effective mass</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Accommodation réseau</s0>
<s5>07</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Mismatch lattice</s0>
<s5>07</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Acomodación red</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Composition chimique</s0>
<s5>08</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Chemical composition</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Hamiltonien</s0>
<s5>09</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Hamiltonians</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Haute performance</s0>
<s5>10</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>High performance</s0>
<s5>10</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Alto rendimiento</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Détecteur IR</s0>
<s5>11</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Infrared detectors</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Gallium Indium Arsénioantimoniure Mixte</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>12</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Gallium Indium Antimonides arsenides Mixed</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>12</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Antimoniuro arseniuro Mixto</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Aluminium Gallium Arsénioantimoniure Mixte</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>13</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Aluminium Gallium Antimonides arsenides Mixed</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>13</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Antimoniuro arseniuro Mixto</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Densité courant</s0>
<s5>14</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Current density</s0>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Puits quantique</s0>
<s5>15</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Quantum wells</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Antimoniure de gallium</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Gallium antimonides</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Hétérostructure</s0>
<s5>17</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Heterostructures</s0>
<s5>17</s5>
</fC03>
<fN21>
<s1>044</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003498 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 003498 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:12-0066495
   |texte=   A multi-color quantum well photodetector for mid- and long-wavelength infrared detection
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024